一般情况下,数论领域的猜想表述起来都比较精确直观。
又比如大名鼎鼎的哥德巴赫猜想,一句话就能看懂:任一大于2的偶数都可写成两个质数之和。
但ABC猜想却是个例外。
它理解起来非常抽象。
但是,这只是看起来正确的规律,实际上存在反例!
事实上,计算机能找到无穷多的这样反例。
于是我们可以这样表述ABC猜想,d“通常”不比c“小太多”。
怎么叫通常不比c小太多呢?
如果我们把d稍微放大一点点,放大成d的(1+ε次方),那么虽然还是不能保证大过c,但却足以让反例从无限个变成有限个。
这就是ABC猜想的表述了。
ABC猜想不但涉及加法(两个数之和),又包含乘法(质因子相乘),接着还模糊地带有点乘方(1+ε次方),最坑爹的是还有反例存在。
因此,这个猜想的难度可想而知。
事实上,除了尚未解决的涉及多个数学分支的猜想界皇冠黎曼猜想以外,其他数论中的猜想,诸如哥德巴赫猜想、孪生素数猜想,以及已经解决的费马大定理,基本上都没有ABC猜想重要。
这是为何呢?
首先,ABC猜想对于数论研究者来说,是反直觉的。
历史上反直觉的却又被验证为正确的理论,数不胜数。
一旦反直觉的理论被证实是正确的,基本上都改变了科学发展的进程。
举一个简单的例子:牛顿力学的惯性定律,物体若不受外力就会保持目前的运动状态,这在17世纪无疑是一个重量级的思想炸弹。
物体不受力状态下当然会从运动变为停止,这是当时的普通人基于每天的经验得出的正常思想。
而实际上,这种想法,在任何一个于20世纪学习过初中物理、知道有种力叫摩擦力的人来看,都会显得过于幼稚。